Векторы. Виды векторов. Что такое вектор? Почему вектор

Такое понятие, как вектор, рассматривается практически во всех естественных науках, причем он может иметь совершенно разное значение, поэтому дать однозначное определение вектора для всех областей невозможно. Но попробуем разобраться. Итак, вектор - что такое?

Понятие вектора в классической геометрии

Вектор в геометрии - отрезок, для которого указано, какая из его точек является началом, а какая - концом. То есть, говоря проще, вектором называется направленный отрезок.

Соответственно, обозначается вектор (что такое - рассмотрели выше), как и отрезок, то есть двумя заглавными буквами латинского алфавита с добавлением сверху черты или стрелки, направленной вправо. Также его можно подписать строчной (маленькой) буквой латинского алфавита с чертой или стрелкой. Стрелка всегда направлена вправо и не меняется в зависимости от расположения вектора.

Таким образом, вектор имеет направление и длину.

В обозначении вектора содержится и его направление. Выражается это так, как на рисунке ниже.

Изменение направления меняет значение вектора на противоположное.

Длиной вектора называется длина отрезка, от которого он образован. Обозначается он как модуль от вектора. Это показано на рисунке ниже.

Соответственно, нулевым является вектор, длина которого равна нулю. Из этого следует, что нулевой вектор представляет собой точку, при чем в ней совпадают точки начала и конца.

Длина вектора - величина всегда не отрицательная. Иначе говоря, если есть отрезок, то он в обязательном порядке обладает некоторой длиной или же является точкой, тогда его длина равна нулю.

Само понятие точки является базовым и определения не имеет.

Сложение векторов

Существуют специальные формулы и правила для векторов, с помощью которых можно выполнить сложение.

Правило треугольника. Для сложения векторов по этому правилу достаточно совместить конец первого вектора и начала второго, используя при этом параллельный перенос, и соединить их. Полученный третий вектор и будет равен сложению двух других.

Правило параллелограмма. Для сложения по этому правилу необходимо провести оба вектора из одной точки, а затем провести из конца каждого из них другой вектор. То есть, из первого вектора будет проведен второй, а из второго - первый. В результате получится новая точка пересечения и образуется параллелограмм. Если совместить точку пересечения начал и концов векторов, то полученный вектор и будет результатом сложения.

Похожим образом возможно выполнять и вычитание.

Разность векторов

Аналогично сложению векторов возможно выполнить и их вычитание. Оно базируется на принципе, указанном на рисунке ниже.

То есть вычитаемый вектор достаточно представить в виде вектора, ему противоположного, и произвести расчет по принципам сложения.

Также абсолютно любой ненулевой вектор возможно умножить на какое-либо число k, это изменит его длину в k раз.

Помимо этих, существуют и другие формулы векторов (например, для выражения длины вектора через его координаты).

Расположение векторов

Наверняка многие сталкивались с таким понятием, как коллинеарный вектор. Что такое коллинеарность?

Коллинеарность векторов - эквивалент параллельности прямых. Если два вектора лежат на прямых, которые параллельны друг другу, или же на одной прямой, то такие векторы называются коллинеарными.

Направление. Относительно друг друга коллинеарные векторы могут быть сонаправленными или противоположно направленными, это определяется направлением векторов. Соответственно, если вектор сонаправлен с другим, то вектор, ему противоположный, противоположно направлен.

На первом рисунке показаны два противоположно направленных вектора и третий, который не коллинеарен им.

После введения вышеуказанных свойств возможно дать определение и равным векторам - это векторы, которые направлены в одну сторону и имеют одинаковую длину отрезков, от которых они образованы.

Во многих науках применяется еще и понятие радиус-вектора. Подобный вектор описывает положение одной точки плоскости относительно другой фиксированной точки (зачастую это начало координат).

Векторы в физике

Предположим, при решении задачи возникло условие: тело движется со скоростью 3 м/с. Это означает, что тело движется с конкретным направлением по одной прямой, поэтому данная переменная будет величиной векторной. Для решения важно знать и значение, и направление, так как в зависимости от рассмотрения скорость может равняться и 3 м/c, и -3 м/с.

В общем случае вектор в физике используется для указания направления силы, действующей на тело, и для определения равнодействующей.

При указании этих сил на рисунке их обозначают стрелками с подписью вектора над ним. Классически длина стрелки так же важна, с помощью нее указывают, какая сила действует сильнее, однако это свойство побочное, опираться на него не стоит.

Вектор в линейной алгебре и математическом анализе

Элементы линейных пространств также называются векторами, однако в данном случае они представляют собой упорядоченную систему чисел, описывающих некоторые из элементов. Поэтому направление в данном случае уже не имеет никакой важности. Определение вектора в классической геометрии и в математическом анализе сильно различаются.

Проецирование векторов

Спроецированный вектор - что такое?

Довольно часто для правильного и удобного расчета необходимо разложить вектор, находящийся в двухмерном или трехмерном пространстве, по осям координат. Данная операция необходима, например, в механике при подсчете сил, действующих на тело. Вектор в физике используется достаточно часто.

Для выполнения проекции достаточно опустить перпендикуляры из начала и конца вектора на каждую из координатных осей, полученные на них отрезки и будут называться проекцией вектора на ось.

Для подсчета длины проекции достаточно умножить его изначальную длину на определенную тригонометрическую функцию, которая получается при решении мини-задачи. По сути, есть прямоугольный треугольник, в котором гипотенуза является исходным вектором, один из катетов - проекцией, а другой катет - опущенным перпендикуляром.

Наконец-то у меня добрались руки до обширной и долгожданной темы аналитической геометрии . Сначала немного о данном разделе высшей математики…. Наверняка вам сейчас вспомнился курс школьной геометрии с многочисленными теоремами, их доказательствами, чертежами и т.д. Что скрывать, нелюбимый и часто малопонятный предмет для значительной доли учеников. Аналитическая геометрия, как ни странно, может показаться более интересной и доступной. Что означает прилагательное «аналитическая»? На ум сразу приходят два штампованных математических оборота: «графический метод решения» и «аналитический метод решения». Графический метод , понятно, связан с построением графиков, чертежей. Аналитический же метод предполагает решение задач преимущественно посредством алгебраических действий. В этой связи алгоритм решений практически всех задач аналитической геометрии прост и прозрачен, зачастую достаточно аккуратно применить нужные формулы – и ответ готов! Нет, конечно, совсем без чертежей тут не обойдется, к тому же для лучшего понимания материала я постараюсь приводить их сверх необходимости.

Открываемый курс уроков по геометрии не претендует на теоретическую полноту, он ориентирован на решение практических задач. Я включу в свои лекции только то, что с моей точки зрения, является важным в практическом плане. Если вам необходима более полная справка по какому-либо подразделу, рекомендую следующую вполне доступную литературу:

1) Вещь, с которой, без шуток, знакомо несколько поколений: Школьный учебник по геометрии , авторы – Л.С. Атанасян и Компания . Сия вешалка школьной раздевалки уже выдержала 20-ть (!) переизданий, что, конечно, не является пределом.

2) Геометрия в 2 томах . Авторы Л.С. Атанасян, Базылев В.Т . Это литература для высшей школы, вам потребуется первый том . Из моего поля зрения могут выпадать редко встречающиеся задачи, и учебное пособие окажет неоценимую помощь.

Обе книги можно бесплатно закачать в Интернете. Кроме того, можете использовать мой архив с готовыми решениями, который можно найти на странице Скачать примеры по высшей математике .

Из инструментальных средств предлагаю опять же собственную разработку – программный комплекс по аналитической геометрии, который значительно упростит жизнь и сэкономит массу времени.

Предполагается, что читатель знаком с базовыми геометрическими понятиями и фигурами: точка, прямая, плоскость, треугольник, параллелограмм, параллелепипед, куб и т.д. Желательно помнить некоторые теоремы, хотя бы теорему Пифагора, привет второгодникам)

А сейчас мы последовательно рассмотрим: понятие вектора, действия с векторами, координаты вектора. Далее рекомендую прочитать важнейшую статью Скалярное произведение векторов , а также и Векторное и смешанное произведение векторов . Не лишней будет и локальная задача – Деление отрезка в данном отношении . На основе вышеуказанной информации можно освоить уравнение прямой на плоскости с простейшими примерами решений , что позволит научиться решать задачи по геометрии . Также полезны следующие статьи: Уравнение плоскости в пространстве , Уравнения прямой в пространстве , Основные задачи на прямую и плоскость , другие разделы аналитической геометрии. Естественно, попутно будут рассматривать типовые задания.

Понятие вектора. Свободный вектор

Сначала повторим школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:

В данном случае началом отрезка является точка , концом отрезка – точка . Сам вектор обозначен через . Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор , и это уже совершенно другой вектор . Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.

Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.

!!! Примечание: Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.

Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой: , но допустима и запись , которую я буду использовать в дальнейшем . Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом: , подразумевая тем самым, что это вектор.

То была стилистика, а сейчас о способах записи векторов:

1) Векторы можно записать двумя большими латинскими буквами:
и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.

2) Векторы также записывают маленькими латинскими буквами:
В частности, наш вектор можно для краткости переобозначить маленькой латинской буквой .

Длиной или модулем ненулевого вектора называется длина отрезка . Длина нулевого вектора равна нулю. Логично.

Длина вектора обозначается знаком модуля: ,

Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.

То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор .

Если совсем просто – вектор можно отложить от любой точки :

Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР или свободный вектор . Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте вектор произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё математически корректно – вектор можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)

Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.

Следует отметить, что с точки зрения физики понятие свободного вектора в общем случае некорректно, и точка приложения вектора имеет значение. Действительно, прямой удар одинаковой силы по носу или по лбу хватит развивать мой дурацкий пример влёчет разные последствия. Впрочем, несвободные векторы встречаются и в курсе вышмата (не ходите туда:)).

Действия с векторами. Коллинеарность векторов

В школьном курсе геометрии рассматривается ряд действий и правил с векторами: сложение по правилу треугольника, сложение по правилу параллелограмма, правило разности векторов, умножения вектора на число, скалярное произведение векторов и др. Для затравки повторим два правила, которые особенно актуальны для решения задач аналитической геометрии.

Правило сложения векторов по правилу треугольников

Рассмотрим два произвольных ненулевых вектора и :

Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор от конца вектора :

Суммой векторов и является вектор . Для лучшего понимания правила в него целесообразно вложить физический смысл: пусть некоторое тело совершило путь по вектору , а затем по вектору . Тогда сумма векторов представляет собой вектор результирующего пути с началом в точке отправления и концом в точке прибытия. Аналогичное правило формулируется для суммы любого количества векторов. Как говорится, тело может пройти свой путь сильно поддатым по зигзагу, а может и на автопилоте – по результирующему вектору суммы.

Кстати, если вектор отложить от начала вектора , то получится эквивалентное правило параллелограмма сложения векторов.

Сначала о коллинеарности векторов. Два вектора называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».

Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными . Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены .

Обозначения: коллинеарность векторов записывают привычным значком параллельности: , при этом возможна детализация: (векторы сонаправлены) или (векторы направлены противоположно).

Произведением ненулевого вектора на число является такой вектор , длина которого равна , причём векторы и сонаправлены при и противоположно направлены при .

Правило умножения вектора на число легче понять с помощью рисунка:

Разбираемся более детально:

1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.

2) Длина. Если множитель заключен в пределах или , то длина вектора уменьшается . Так, длина вектора в два раза меньше длины вектора . Если множитель по модулю больше единицы, то длина вектора увеличивается в раз.

3) Обратите внимание, что все векторы коллинеарны , при этом один вектор выражен через другой, например, . Обратное тоже справедливо : если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор .

4) Векторы сонаправлены. Векторы и также сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.

Какие векторы являются равными?

Два вектора равны, если они сонаправлены и имеют одинаковую длину . Заметьте, что сонаправленность подразумевает коллинеарность векторов. Определение будет неточным (избыточным), если сказать: «Два вектора равны, если они коллинеарны, сонаправлены и имеют одинаковую длину».

С точки зрения понятия свободного вектора, равные векторы – это один и тот же вектор, о чём уже шла речь в предыдущем параграфе.

Координаты вектора на плоскости и в пространстве

Первым пунктом рассмотрим векторы на плоскости. Изобразим декартову прямоугольную систему координат и от начала координат отложим единичные векторы и :

Векторы и ортогональны . Ортогональны = Перпендикулярны. Рекомендую потихоньку привыкать к терминам: вместо параллельности и перпендикулярности используем соответственно слова коллинеарность и ортогональность .

Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: .

Рассматриваемые векторы называют координатными векторами или ортами . Данные векторы образуют базис на плоскости. Что такое базис, думаю, интуитивно многим понятно, более подробную информацию можно найти в статье Линейная (не) зависимость векторов. Базис векторов .Простыми словами, базис и начало координат задают всю систему – это своеобразный фундамент, на котором кипит полная и насыщенная геометрическая жизнь.

Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице.

Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: . Координатные векторы нельзя переставлять местами.

Любой вектор плоскости единственным образом выражается в виде:
, где – числа , которые называются координатами вектора в данном базисе. А само выражение называется разложением вектора по базису .

Ужин подан:

Начнем с первой буквы алфавита: . По чертежу хорошо видно, что при разложении вектора по базису используются только что рассмотренные:
1) правило умножения вектора на число: и ;
2) сложение векторов по правилу треугольника: .

А теперь мысленно отложите вектор от любой другой точки плоскости. Совершенно очевидно, что его разложение будет «неотступно следовать за ним». Вот она, свобода вектора – вектор «всё носит при себе». Это свойство, разумеется, справедливо для любого вектора. Забавно, что сами базисные (свободные) векторы не обязательно откладывать от начала координат, один можно нарисовать, например, слева внизу, а другой – справа вверху, и от этого ничего не изменится! Правда, делать так не нужно, поскольку преподаватель тоже проявит оригинальность и нарисует вам «зачтено» в неожиданном месте.

Векторы , иллюстрируют в точности правило умножения вектора на число, вектор сонаправлен с базисным вектором , вектор направлен противоположно по отношению к базисному вектору . У данных векторов одна из координат равна нулю, дотошно можно записать так:


А базисные векторы, к слову, так: (по сути, они выражаются сами через себя).

И, наконец: , . Кстати, что такое вычитание векторов, и почему я не рассказал о правиле вычитания? Где-то в линейной алгебре, уже не помню где, я отмечал, что вычитание – это частный случай сложения. Так, разложения векторов «дэ» и «е» преспокойно записываются в виде суммы: , . Переставьте слагаемые местами и проследите по чертежу, как чётко в этих ситуациях работает старое доброе сложение векторов по правилу треугольника.

Рассмотренное разложение вида иногда называют разложением вектора в системе орт (т.е. в системе единичных векторов). Но это не единственный способ записи вектора, распространён следующий вариант:

Или со знаком равенства:

Сами базисные векторы записываются так: и

То есть, в круглых скобках указываются координаты вектора. В практических задачах используются все три варианта записи.

Сомневался, говорить ли, но всё-таки скажу: координаты векторов переставлять нельзя . Строго на первом месте записываем координату, которая соответствует единичному вектору , строго на втором месте записываем координату, которая соответствует единичному вектору . Действительно, и – это ведь два разных вектора.

С координатами на плоскости разобрались. Теперь рассмотрим векторы в трехмерном пространстве, здесь практически всё так же! Только добавится ещё одна координата. Трехмерные чертежи выполнять тяжко, поэтому ограничусь одним вектором, который для простоты отложу от начала координат:

Любой вектор трехмерного пространства можно единственным способом разложить по ортонормированному базису :
, где – координаты вектора (числа) в данном базисе.

Пример с картинки: . Давайте посмотрим, как здесь работают правила действий с векторами. Во-первых, умножение вектора на число: (красная стрелка), (зеленая стрелка) и (малиновая стрелка). Во-вторых, перед вами пример сложения нескольких, в данном случае трёх, векторов: . Вектор суммы начинается в исходной точке отправления (начало вектора ) и утыкается в итоговую точку прибытия (конец вектора ).

Все векторы трехмерного пространства, естественно, тоже свободны, попробуйте мысленно отложить вектор от любой другой точки, и вы поймёте, что его разложение «останется при нём».

Аналогично плоскому случаю, помимо записи широко используются версии со скобками: либо .

Если в разложении отсутствует один (или два) координатных вектора, то вместо них ставятся нули. Примеры:
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем .

Базисные векторы записываются следующим образом:

Вот, пожалуй, и все минимальные теоретические знания, необходимые для решения задач аналитической геометрии. Возможно многовато терминов и определений, поэтому чайникам рекомендую перечитать и осмыслить данную информацию ещё раз. Да и любому читателю будет полезно время от времени обращаться к базовому уроку для лучшего усвоения материала. Коллинеарность, ортогональность, ортонормированный базис, разложение вектора – эти и другие понятия будут часто использоваться в дальнейшем. Отмечу, что материалов сайта недостаточно для сдачи теоретического зачета, коллоквиума по геометрии, так как все теоремы (к тому же без доказательств) я аккуратно шифрую – в ущерб научному стилю изложения, но плюсом к вашему пониманию предмета. Для получения обстоятельной теоретической справки прошу следовать на поклон к профессору Атанасяну.

А мы переходим к практической части:

Простейшие задачи аналитической геометрии.
Действия с векторами в координатах

Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть , даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.

Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.

Как найти вектор по двум точкам?

Если даны две точки плоскости и , то вектор имеет следующие координаты:

Если даны две точки пространства и , то вектор имеет следующие координаты:

То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора .

Задание: Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока.

Пример 1

Даны две точки плоскости и . Найти координаты вектора

Решение: по соответствующей формуле:

Как вариант, можно было использовать следующую запись:

Эстеты решат и так:

Лично я привык к первой версии записи.

Ответ:

По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:

Обязательно нужно понимать различие между координатами точек и координатами векторов :

Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости. Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .

Записи координат точек и координат векторов вроде бы схожи: , а смысл координат абсолютно разный , и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.

Дамы и господа, набиваем руку:

Пример 2

а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .

Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится;-). Чертежи делать не нужно. Решения и ответы в конце урока.

Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)

Как найти длину отрезка?

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Пример 3

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок – это не вектор , и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приём вынесение множителя из-под корня . В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Пример 4

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.

Как найти длину вектора?

Если дан вектор плоскости , то его длина вычисляется по формуле .

Если дан вектор пространства , то его длина вычисляется по формуле .

Стандартное определение: «Вектор - это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением - «сколько килограмм» или «сколько джоулей».

Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

Скорость, сила, ускорение - векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля - тоже векторные величины.

Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

Вот другой пример.
Автомобиль движется из A в B . Конечный результат - его перемещение из точки A в точку B , то есть перемещение на вектор .

Теперь понятно, почему вектор - это направленный отрезок. Обратите внимание, конец вектора - там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или

До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы - новое понятие. Это другой класс математических объектов. Для них свои правила.

Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.

Понятия «больше» и «меньше» для векторов не существует - ведь направления их могут быть разными. Сравнивать можно только длины векторов.

А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым - вектор, длина которого равна нулю, то есть его начало совпадает с концом.

Удобнее всего работать с векторами в прямоугольной системе координат - той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа - ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами:

Здесь в скобках записаны координаты вектора - по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.

Если координаты вектора заданы, его длина находится по формуле

Сложение векторов

Для сложения векторов есть два способа.

1 . Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов и .

Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

2 . Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .

По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий - перемещение из А в F .

При сложении векторов и получаем:

Вычитание векторов

Вектор направлен противоположно вектору . Длины векторов и равны.

Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.

Скалярное произведение векторов

Векторы можно умножать не только на числа, но и друг на друга.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

Обратите внимание - перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов - силы и перемещения:

Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :

Из формулы для скалярного произведения можно найти угол между векторами:

Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.

В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике , знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

Векторы - полезнейший математический инструмент. В этом вы убедитесь на первом курсе.

Системно-векторная психология – новейшее направление в психологии, образовавшееся двенадцать лет назад. Основоположником является психоаналитик Юрий Бурлан , который в настоящее время систематически проводит свои семинары, курсы, тренинги. Интересно, что проходят они, в том числе, и в онлайн-режиме в Интернете, собирая тысячи зрителей и слушателей.

Сам Ю. Бурлан говорит, что его основная задача – сделать человека счастливым, сделать так, чтобы после его тренинга клиенты выходили с главным навыком – умением радоваться жизни и улыбаться, все остальное, по словам психолога, наладится само собой.

Так как основной акцент в этом направлении сделан на бессознательном , а в основу типологии личности положены эрогенные зоны человека, его можно обозначить как ветвь психоанализа . Хотя иногда системно-векторную психологию определяют не просто как отдельное направление в психологии, а как новую широкую область знай, комплексную науку о человеке.

Системно-векторная психология и системный психоанализ – это обширная система психологических знаний о человеке, направление в прикладной психологии.

Ю. Бурлан затрагивает и социологию, и педагогику и даже политику, объясняя свою теорию, он комплексно подходит к пониманию феномена личности, функционирующей в обществе.

Видовая роль и вектор

В системно-векторной психологии человек рассматривается как целостная сложная система в общественной системе, причем система эта не только физическая и психическая, но и социальная. Особую роль в формировании личности Бурлан отводит обществу и инстинкту продолжения рода .

Человек, по словам Ю. Бурлана, это сгусток живого существа, желающего получать удовольствие, наслаждаться. Это желание и стремление к наслаждению в теле выражается через эрогенные зоны.

Общество подталкивает к развитию не только конкретного человека, но и человечество как вид. Когда в далекие времена люди стали собираться вместе и жить группами, чтобы выжить, у человека появились особые свойства и желания. Сегодня мы говорим, что они базировались на двух основных бессознательных потребностях , изначально же, по всей видимости, это были не потребности, а групповые задачи первобытных людей. А потребности-задачи эти:

  • сохранение жизни,
  • продолжение рода.

Так как развитие человека это движение в определенном направлении, у него должен быть вектор, ориентир. Вектором становится главное желание личности. Желание порождает мысль, мысль формирует намерение, а намерение подталкивает к действию, которое оформляет роль человека в обществе, видовую роль .

В первобытной стае у каждого человека была своя определенная видовая роль, обязанность, работа, которую он выполнял ради общего блага.

Человек не может жить в одиночку, он давно объединился и продолжает существовать в единой системе отношений между людьми под названием общество. Природа от рождения наделяет человека всем необходимым (интеллектом, способностями, чувствами, темпераментом и так далее), для того, чтобы он смог стать счастливым, исполнил все свои желания и осуществил видовую роль.

Вместе с развитием общества развивался и человек. Чем общество сложнее, тем более многогранным становится психическое устройство личности. Уже
сменилось так много поколений людей, что и желания, и потребности, и поведение, и человеческие взаимоотношения усложнились настолько, что за ними трудно разглядеть те первые, первобытные, но уже сознательные действия в общине, видовую роль.

А между тем эта роль на бессознательном уровне по-прежнему продолжает определять особенности личности и ее социальную направленность.

Современный человек, не осознавая свою роль в обществе (по большому счету свое предназначение), движется в неправильном направлении или вовсе в обратную сторону от счастья.

Роль определяется желанием наслаждаться жизнью. В зависимости от того, какая эрогенная зона является преимущественной для выражения этого желания, выделяется восемь типов личности .

Типы направленности личности

От вектора зависит тип мышления, ценности, приоритеты человека, его сексуальность, психическое состояние, физическое здоровье и степень удовлетворенности жизнью.

Данные от природы векторальные качества нельзя изменить, но нужно развивать их и реализовывать свой внутренний потенциал. Врожденные свойства и качества развиваются, начиная от рождения человека до его полного полового созревания.


Краткое описание восьми векторов
, определяющих внутренний мир человека на бессознательном уровне:

  1. Кожный. Видовая роль в первобытном обществе – охотник и охранник территории, функции: запретительная, ограничительная.

Подходящие профессии: спортсмен, инженер, изобретатель, военный, бизнесмен.

Личностные качества: ответственность, рациональность, дисциплинированность, активность, конкурентоспособность, пунктуальность, амбициозность, экономность. Преобладает логическое мышление, не боятся перемен, стремятся к лидерству, успеху, богатству, социальному статусу, хотят добиться высот в карьере. Хорошо ориентируются во времени и пространстве.

К этому типу относятся примерно 24% населения.

  1. Анальный . Видовая роль – хранитель пещеры, очага, «тыловик»; функции: передача накопленного опыта следующим поколениям.

Подходящие профессии: учитель, врач, домохозяйка/семьянин.

Личностные качества: упрямые и принципиальные, но легкоранимые, волевые, старательные, исполнительные, надежные, честные, верные, нерешительные, злопамятные, консервативные. Это интеллектуалы, склонные к перфекционизму, все стремятся сделать идеально, поэтому могут быть высокими профессионалами в любой области. Преобладает аналитическое мышление. У таких людей отличная память.

К этому типу относятся примерно 20% населения.

  1. Мышечный. Видовая роль – воин и охотник, функция: защитная.

Подходящие профессии: рабочий на заводе, строитель, сельхозрабочий и иной представитель рабочего класса, а также военный.

Личностные качества: трудолюбие, исполнительность, неприхотливость, выносливость, простота (основные потребности базовые: еда, сон, секс), миролюбие. Мышление ригидное, наглядно-действенное, ум активизируется только в процессе работы мышц.

К этому типу относятся примерно 38% населения.

  1. Уретральный. Видовая роль – вождь, функции: ответственность за выживание, управление, расширение стаи и ареала ее обитания.

Подходящие профессии: все, связанные с руководством и управлением людьми, вплоть до президента страны.

Личностные качества: врожденный альтруизм, оптимизм, активность, инициативность, бесстрашие, справедливые, милосердие, хитрость, непредсказуемость. Мышление тактическое и креативное.

Подходящие профессии: психолог, врач, учитель, воспитатель, дизайнер, кинорежиссер и иные деятели искусства и культуры.

Личностные качества: доброта, отзывчивость, понимание, сопереживание, влюбчивость, скромность, совестливость, внушаемость, мечтательность, кокетство, эмоциональность. Такие люди фантазеры, мыслят образами.

К этому типу относятся примерно 5% населения.

  1. Звуковой . Видовая роль – ночной охранник стаи, функции: охрана в ночи, обратная связь с первопричиной.

Подходящие профессии: философ, композитор, программист, переводчик, писатель, поэт.

Личностные качества: идеалисты (и желания, в основном, у них нематериальные), рассудительные, сосредоточенные, погруженные в себя, эгоцентричные, безэмоциональные, отчужденные. Мышление абстрактное.

К этому типу относятся примерно 5% населения.

  1. Оральный. Видовая роль – загонщик добычи, глашатай, шут; функции: предупреждение об опасности, призыв к объединению.

Подходящие профессии: повар, певец, комментатор, оратор.

Личностные качества: жизнерадостность, общительность, смешливость, обаяние, чувство юмора. Такие люди склонны лгать и насмехаться. Мыслят когда говорят, то есть их мышление вербальное.

К этому типу относятся примерно 5% населения.

  1. Обонятельный. Видовая роль – разведчик, советник вождя, колдун, «серый кардинал»; функции: стратегическая разведка.

Подходящие профессии: разведчик, политик, финансист.

Личностные качества: меланхоличны, спокойны, интуитивны, беспристрастны, бывают аморальны и коварны. Мыслят такие личности интуитивно, на бессознательном уровне.

К этому типу относятся примерно 1% населения.

Почему нужно знать свой вектор?

В первобытной стае у каждого человека был один, конкретный вектор, так как и общество это было примитивным. Сегодня тип направленности личности обычно складывается из нескольких векторов , в среднем из 3-4 -х. Люди, у которых направленность складывается из семи или даже всех восьми векторов, как правило, бывают выдающимися или гениальными.

Наличие сразу нескольких векторов означает, что у современного человека есть больше возможностей для самореализации и шансов на счастье. Но так уж устроен мир и человек, что зачастую то, что должно быть источником наслаждения, превращается в повод для страданий. От незнания и нежелания многих людей понять себя, система под названием «человек» дает «сбои».

Хотя автор концепции подчеркивает, что чистые типы встречаются очень и очень редко, определив свой доминирующий векторальный тип, можно многое о себе узнать, осознать проблемы и найти пути их решения. Вектор личности всегда направлен на самореализацию и достижение благополучия.

Приятный бонус: если научиться различать типы личностей по вектору, процесс понимания и общения с окружающими людьми облегчится и улучшиться.

Описание восьми векторов – это основы основ системно-векторной психологии и в то же время базовая идея . Если «копнуть» это направление глубже, можно обнаружить что Ю. Бурлан затрагивает и объясняет многие явления внутреннего мира человека и внешние, общества.

Системный психоанализ становится модным в России и на всем постсоветском пространстве. Он уже эффективно применяется не только в психологии, но и в медицине и педагогике. Людей привлекает к этому направлению то особое, системное мышление и мировоззрение, на которое «переключает» человека Ю. Бурлан. Его подход необычен и неоднозначен, но, тем не менее, популярен.

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Значение слова вектор

вектор в словаре кроссвордиста

Словарь медицинских терминов

Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.

вектор

А, м. (спец.). Изображаемая отрезком прямой математическая величина, характеризующаяся численным значением и направлением.

прил. векторный, -ая, -ое. Векторное исчисление (математическая дисциплина).

Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.

вектор

м. Отрезок прямой, характеризующийся численным значением и определенной направленностью.

Энциклопедический словарь, 1998 г.

вектор

ВЕКТОР (от лат. vector - несущий) отрезок определенной длины и направления. Обычно вектор обозначается буквой a или (первая буква - начало, вторая - конец отрезка); абсолютная величина (длина) вектора записывается |a| либо. Два вектора равны лишь в том случае, если у них одинаковы длины и совпадают направления (т.е. они параллельны и одинаково ориентированы). С изменением ориентации меняется знак вектора. Векторы изображают т.н. векторные величины: силу, скорость, ускорение и т.д. Действия над вектором изучают в векторном исчислении.

вектор

ВЕКТОР в молекулярной генетике самостоятельно реплицирующаяся молекула ДНК, способная включать чужеродную ДНК (гены) и переносить ее в клетки, наследственные свойства которых желают изменить. Обычно вектор создают на основе ДНК плазмид и вирусов (в т.ч. бактериофагов). Вектор широко используют в генетической инженерии для размножения (клонирования) введенных генов или получения кодируемых этими генами белковых продуктов.

Вектор

(от лат. vector, буквально ≈ несущий, перевозящий), в геометрическом смысле ≈ направленный отрезок, то есть отрезок, у которого указаны начало (называемое также точкой приложения В.) и конец. Для обозначения В. используются либо жирные латинские буквы а, b, либо буквы обычного алфавита с чёрточками или стрелками наверху:

В., имеющий начало в точке А и конец в точке В, обозначается. Прямая, на которой расположен В., называется линией действия данного В.

Понятие В. возникло в связи с изучением величин, характеризуемых численным значением и направленностью (например, перемещение, скорость и ускорение движущейся материальной точки, действующая на неё сила и т.п.). В механике и физике рассматривают свободные, скользящие и связанные В. Вектор называется свободным, если его значение не меняется при произвольном параллельном переносе. Свободным В. является, например, скорость движения материальной точки. В. называется скользящим, если его значение не меняется при любом параллельном переносе вдоль линии его действия. Примером скользящего В. может служить сила, действующая на абсолютно твёрдое тело (две равные и расположенные на одной прямой силы оказывают на абсолютно твёрдое тело одинаковое воздействие). В. называется связанным, если фиксировано его начало. Например, сила, приложенная к некоторой точке упругого тела, представляет собой связанный В. Свойства свободных В. изучаются средствами векторной алгебры (см. Векторное исчисление). Общее понятие В. как элемента, так называемого, векторного пространства определяется аксиоматически.

Лит.: Ильин В. А., Позняк Э. Г., Аналитическая геометрия, М., 1968.

Э. Г. Позняк.

Википедия

Вектор

Ве́ктор .

Вектор (математика)

Ве́ктор - в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве.

Примеры: радиус-вектор , скорость , момент силы . Если в пространстве задана система координат, то вектор однозначно задаётся набором своих координат. Поэтому в математике, информатике и других науках упорядоченный набор чисел часто тоже называют вектором. В более общем смысле вектор в математике рассматривается как элемент некоторого векторного пространства.

Является одним из основополагающих понятий линейной алгебры. При использовании наиболее общего определения векторами оказываются практически все изучаемые в линейной алгебре объекты, в том числе матрицы, тензоры, однако, при наличии в окружающем контексте этих объектов, под вектором понимаются соответственно вектор-строка или вектор-столбец, тензор первого ранга. Свойства операций над векторами изучаются в векторном исчислении.

Вектор (геометрия)

вектор - направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая - концом.

Вектор с началом в точке A и концом в точке B принято обозначать как $\overrightarrow{AB}$. Векторы также могут обозначаться малыми латинскими буквами со стрелкой над ними, например a⃗ . Другой распространённый способ записи: выделение символа вектора жирным шрифтом: a .

Вектор в геометрии естественно сопоставляется переносу (параллельному переносу), что, очевидно, проясняет происхождение его названия (, несущий ). Действительно, каждый направленный отрезок однозначно определяет собой какой-то параллельный перенос плоскости или пространства: скажем, вектор $\overrightarrow{AB}$ естественно определяет перенос, при котором точка A перейдет в точку B , также и обратно, параллельный перенос, при котором A переходит в B , определяет собой единственный направленный отрезок $\overrightarrow{AB}$ (единственный - если считать равными все направленные отрезки одинакового направления и длины - то есть рассматривать их как свободные векторы; действительно, при параллельном переносе все точки смещаются в одинаковом направлении на одинаковое расстояние, так что в таком понимании $\overrightarrow{A_1B_1} = \overrightarrow{A_2B_2} = \overrightarrow{A_3B_3} =\dots$).

Интерпретация вектора как переноса позволяет естественным и интуитивно очевидным способом ввести операцию сложения векторов - как композиции переносов; то же касается и операции умножения вектора на число.

Вектор (молекулярная биология)

Вектор (в генетике ) - молекула нуклеиновой кислоты, чаще всего ДНК, используемая в генетической инженерии для передачи генетического материала другой клетке.

Существующие векторы:

  • фазмиды
  • векторы на основе вируса SV40
  • векторы на основе аденовирусов
  • векторы на основе герпесвирусов
  • векторы на основе ретровирусов
  • векторы на основе аденоассоциированного вируса

Вектор (завод)

АО «Уральское производственное предприятие „Вектор“» - военное предприятие, специализирующееся на производстве аппаратуры связи, товаров народного потребления и производственно технического назначения. Располагается в Екатеринбурге. Входит в состав концерна ПВО «Алмаз-Антей» .

Организовано в 1941 году на базе эвакуированного в Свердловск московского завода «Геодезия».

Первое время носил название завод № 356, в 1966-1992 - Свердловский завод электроавтоматики.

В 2002 году федеральное государственное унитарное предприятие «Вектор» по Указу Президента РФ и решению министерства по управлению государственным имуществом Свердловской области было преобразовано в ОАО «Уральское производственное предприятие „Вектор“», 100 % акций которого остались в собственности государства.

«Вектор» в течение 15 лет был монополистом в выпуске отечественных электромузыкальных инструментов и звукоусилительной аппаратуры. 1.

Предприятие награждено орденом Трудового Красного Знамени в 1966 году за успехи, достигнутые в выполнении заданий семилетки.

Вектор (научный центр)

ГНЦ ВБ «Ве́ктор» - один из крупнейших научных вирусологических и биотехнологических центров России, расположенный в наукограде Кольцово Новосибирской области, в нескольких километрах от Новосибирска. Градообразующее предприятие, вокруг которого появился нынешний Наукоград р.п. Кольцово.

Полное название центра - Федеральное бюджетное учреждение науки «Государственный научный центр вирусологии и биотехнологии „Вектор“» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека .

В качестве миссии Центра провозглашено «научное и практическое обеспечение противодействия глобальным инфекционным угрозам ». В ГНЦ ВБ «Вектор» проводятся фундаментальные научно-исследовательские работы в области эпидемиологии, молекулярной биологии, вирусологии, бактериологии, генной инженерии, биотехнологии, экологии и биологической безопасности.

В состав Центра входит филиал - Институт медицинской биотехнологии, расположенный в Бердске.

Примеры употребления слова вектор в литературе.

У всех наций есть биологическое чувство заполненности ареала, проявляющееся в каждой особи нации, и потому можно говорить о биологическом поле нации, а значит, и о векторе этого поля - соответственно в каждой особи.

То есть я допускаю, конечно, вероятие смены вектора влюбленности у Сибура, но это, к сожалению, произойдет не в следующий раз.

Но - только при условии, что глиссадная планка в центре, а значит, самолет движется по гипотенузе, и все законы сложения векторов действуют.

Что вектор функции простого числа будет индивидуализирующей функцией поля комплексных чисел, значениями которой будут инвариантные формы, инварианты, референты, произведения, деления, возведения в степень комплексных чисел, квартерионов, логикой которых является инвариантность тех же действий над комплексными числами, как сама возможность действий с комплексными числами, модальность, объектом которой является квант, понятие которого и есть условие равенства нулю потока квартерионов.

В прошлом мускатный орех давали истеричкам, и испытания на удивление подтвердили вектор действия этого средства.

Видите ли, согласно моим расчетам, положение этой нитки в пространстве в каждый момент времени представляет собой вектор , коллинеарный касательной к кривой перемещения моего центра массы по коридору отделения 1Б.

Свободно падаю или принудительно возношусь к вершинам - куда собственно направлен вектор моей конвертной деятельности?

Мозг Либби почти автоматически начал работать над невероятно сложной проблемой соотношения ускорений, интервалов, векторов движения.

Значит, определив географические координаты изучаемой породы и направление вектора намагниченности, можно узнать, где находился магнитный полюс Земли в то время, когда порода застывала.

Полевой штаб Третьего Гвардейского, принца Дэвиона, полка Космопорт Данкельда Гленгарри, маршрутный вектор Скаи Федеративное Содружество Расчетное время 1314 13 мая 3057 года Внутри большого шагающего вездехода, где помещался полевой штаб Третьего Гвардейского полка, как всегда, было сумрачно и тихо, разве что стрекотание аппаратов связи, пиканье и гул электронных приборов, слабое посвечивание мониторов, сигналы вызовов да негромкие голоса, доносящиеся из динамиков, служили неким фоном, на котором особенно отчетливо раздавался грохот близкой битвы.

На глазах у Жанель прочерченный от ракеты вектор , указывающий точку прицеливания, взял направление точно на вражеское судно.

А какой-нибудь просвещённый академик или художник вектором стяжательства в жизненного благоразумия направлен как раз наоборот - назад, в привычную багровую тьму этого полувека.

Что обеспечивает подъемную силу и энергию переноса, ведь не по ветру же он идет, ведь не секрет, что вектор сдува, насколько можно судить по запоздало включенной статистике, никогда до сих пор не был ориентирован внутрь страны, и поэтому некоторые идеологи уже вещали с видимой доказательностью, будто славянство сгенерировало наконец некое особой компрессии очистное биополе, вытесняющее на задворки мира всех изнеженных, тонкокожих и нервных полукровок.

Как вы понимаете, я имею в виду скалярную величину скорости, поскольку при беге по окружности вектор постоянно меняется.

Затем следует поместить адрес первого байта данных в вектор прерывания.